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- An Overview of Relativistic
Distorted-Wave Cross Sections

Christopher J. Fontes, Hong Lin Zhang and Joseph Abdallah, Jr.

Los Alamos National Laboratory, P.O. Box 1668, Los Alamos, NM 87545

Abstract. Over the past twenty years significant progress has been made in calculating
the vast amounts of relativistic atomic data that are required to model heavy element, non-
LTE plasmas. A number of the relevant processes, including electron-impact excitation,
photoionization, autoionization and electron-impact ionization, involve the computation
of continuum electron wavefunctions. If the plasma consists of ions with sufficiently high
charge, then the distorted-wave approximation is valid and can be used to compute these
continuum orbitals and the corresponding cross sections. An overview of the relativistic
distorted-wave approach is provided with an aim toward underscoring the similarities and
differences with the longer established, nonrelativistic and semi-relativistic approaches.
An example for extending the distorted-wave approach to less highly charged systems via
the inclusion of resonance contributions to the cross sections is provided. Related topics,
such as the top-up contribution, the high energy (Bethe) cross section limit, the Breit
and Mgller interactions, and transitions among magnetic sublevels are also discussed.

INTRODUCTION

The use of fully relativistic atomic data in plasma modeling becomes increas-
ingly important with increasing atomic number Z. Some examples of applications
that benefit from a fully relativistic treatment include the spectroscopic analysis
of stars (iron, Z=26), fluorescent lighting technology (xenon, Z=54), inertial con-
finement fusion (gold, Z=79) and nuclear stockpile stewardship (uranium, Z=92).
The Los Alamos National Laboratory (LANL) relativistic distorted-wave (RDW)
effort was developed to provide data for modeling plasmas of this nature and
is strongly based on the research program developed by Douglas Sampson and
coworkers at Penn State University [e.g. 1-3]. A review article of this research
is currently being written [4] in order to capture the breadth of this work in one
convenient publication. The two guiding precepts of this program are to develop



computer codes that are (1) fast, and yet (2) provide accurate data within the
RDW paradigm. As is true of all DW formalisms, the resulting RDW data are ex-
pected to be most accurate for highly charged ions, for which the electron-electron
interaction is considered to be a perturbation relative to the nuclear Coulomb
interaction.

BASIC THEORY AND COMPUTATIONAL
FRAMEWORK

The theory of the RDW approach can be found in [1-3] and the references
provided therein. The fundamental difference between this fully relativistic ap-
proach and other non- or semi-relativistic approaches is that all (i.e. both bound
and free) electron wavefunctions are solutions of some form of the many-electron
Dirac equation rather than the Schrodinger equation. For example, each bound
electron wavefunction can be written in the form of a Dirac spinor -
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with large and small components (P and @), respectively) that are solutions of the
coupled differential equations
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In the above equations the x., functions are the usual spin-angular-momentum
functions, « is the relativistic quantum number that takes on the values

k=4 j=0-3% k=—(+1), j=£+1, (4)

€nx 18 the energy eigenvalue, V(r) represents the nuclear and electron-electron po-
tentials and « is the fine structure constant. A similar set of expressions applies to
the continuum electron wavefunctions except that the principal quantum number
n is replaced with a continuous variable to represent the free-electron energy.
The capability to solve such systems of equations and provide fully relativistic
data is contained within the LANL suite of atomic data codes [5-7]. Vast amounts
of data are required to carry out plasma kinetics modeling and these codes pro-
vide the cross sections associated with a variety of atomic processes (and their
inverses), which include photoexcitation (radiative decay), photoionization (ra-
diative recombination), collisional excitation (collisional de-excitation), collisional



ionization (three-body recombination) and autoionization (di-electronic capture).
For the purpose of this work numerical results for only collisional excitation and
collisional ionization will be discussed in some detail, with autoionization being
mentioned in connection with the resonance contribution to collisional excitation.
The emphasis of the following discussion concerns extensions and improvements
to the basic types of RDW calculations.

NUMERICAL EXAMPLES
Excitation to Magnetic Sublevels

The use of plasma polarization spectroscopy to diagnose plasma conditions has
gained popularity in recent years [8-10]. Such diagnostics require a knowledge of
collisional excitation cross sections among the magnetic sublevels of an ion. For
example, consider the usual total angular momentum type of excitation transition
(J — J') from the ground state of a He-like ion

e” + (152 jmg — e~ + (1s 2p1/2) =1, (5)

which can split into a number of transitions between specific magnetic sublevels
(M — M)
e” + (18%) jmo =0 — €~ + (1s 2D1/2) J1=1,M'=0,41 - (6)

The polarization of light emitted from each of these excited states as they decay
back down to the ground state has a different characterization, which can be used,
for example, to obtain information about the nature of the electron energy dis-
tribution. Figure 1 provides a numerical example for this specific set of magnetic
transitions in Fe?** [11]. The total (i.e. J — J’) collision strength, which can be
obtained by summing the individual sublevel contributions in this case, is also pro-
vided as a reference to the next discussion concerning the resonance contribution
to collisional excitation.

The Resonance Contribution to Collisional Excitation

In order to improve the accuracy of RDW calculations for less highly charged
ions, it is necessary to include the effect of resonances, which can dominate the
excitation cross section for small impact-electron energies. Once again considering
excitation from the ground state of a He-like ion, it is possible to capture the
incident electron to create an autoionizing level in the adjacent Li-like ion stage,
which can then autoionize into an excited state of the He-like ion. Symbolically
this resonance path can be written as

e + (132)J=0 — (18 R4 38’)J~ — 6_/ + (18 2p1/2)J/:1, (7)
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FIGURE 1: Magnetic sublevel and total collision strength for the (1s2)o — (1s2p;,2)1 transition
in He-like iron.

where only a small number of possible autoionizing levels (the so-called KMM
resonances) have been listed explicitly. Figure 2 provides an example of the reso-
nance contribution [11] for the same (J — J') transition displayed in Fig. 1. Note
that the impact-electron energy range is only a small portion of that shown in
Fig. 1. Figure 2 clearly shows the enhancement provided by resonance effects over
the standard RDW calculation that is displayed by the smooth, “Total” curve in
Fig. 1. Also provided in Fig. 2 is a more accurate R-Matrix calculation. The
agreement between the RDW and R-Matrix results is considered to be quite good,
giving some confidence that the RDW calculations can be improved using this
two-step (or independent) process approach to the resonance contribution.

A Fully Relativistic Top-up Formulation
for Collisional Excitation

When computing any type of DW cross section the partial-wave summation
must be truncated at some orbital angular momentum value £p,.. There are a
number of ways to estimate the remaining contribution from partial waves corre-
sponding t0 (€max+1) to co. This high-£ contribution is sometimes referred to as
the “top-up”. For relativistic calculations the top-up contribution is often obtained
by hybridizing a nonrelativistic approach. Typically, the relativistic approach will
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FIGURE 2: Total collision strength for the same transition described in Fig. 1, but with the
resonance contribution included in the RDW calculation. An R-Matrix calculation is provided
for comparisons.

have the same form as the nonrelativistic expression except that Dirac spinors, like
those appearing in Eq. (1), are used to represent the bound electrons while the
usual nonrelativistic wavefunctions are used for the continuum electrons. These
so-called quasi-relativistic.approaches have been employed, for example, when us-
ing the plane-wave-Born (PWB) approach to approximate the top-up for arbitrary
transitions [12] and when using the Coulomb-Bethe approximation to estimate the
top-up for dipole-allowed transitions [2].

In order to improve the top-up approximation in the LANL codes, a fully
relativistic formulation has been developed [13] based on using relativistic PWB
theory (RPWB) to estimate the high-£ contributions. As in the nonrelativistic
case, an RDW cross section QRPW for a given transition may be written in the
following general way

émax

QRDW — Z QRDW(E) + QTOP—UP (8)

=0

where QTOP~UF is to be approximated. Using RPWB theory it is possible to com-
pute the total cross section QREWE (i.e. containing all partial-wave contributions,
from £=0 to 00), in addition to the RPWB cross section QFF "B that is computed

by summing up partial-wave contributions from £=0 to £.c. Taking the difference



of these two RPWB cross sections provides an estimate of the top-up, which can
be written as

QTOP-UP o, QRPWE _ ORPWB _ i QFFWE(p). (9)

Zmax
=

fmax+1

Approximating an infinite sum in this manner is sometimes referred to as the
Kummer transformation, which appears as a label for the upper curve displayed
in Fig. 3 to denote that the collision strength was obtained from this type of RPWB
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FIGURE 3: Collision strength for the (1s2s); — (1s2p;/2)1 transition in He-like gold. The three
curves represent the collision strength computed with the RPWB top-up, the Coulomb-Bethe
approximation and no top-up.

top-up formulation. The figure also displays the collision strengths that result from
either the quasi-relativistic, Coulomb-Bethe approximation mentioned above or no
top-up treatment. For this example a An=0, dipole-allowed transition was chosen,
which is the type of transition that typically has the largest top-up contribution.
The He-like gold (Z=79) ion stage was chosen in order to accentuate relativistic
effects. The large effects resulting from a fully relativistic top-up formulation are
evident for this example.



The Generalized Breit Interaction

Another improvement to relativistic structure and scattering calculations in-
volves the inclusion of the generalized Breit interaction (GBI) [14-17]. This in-
teraction includes the lowest order QED effect represented by the exchange of a
virtual photon and can be important when evaluating processes involving tightly
bound electrons in high-Z elements. This two-electron interaction can be written
in the form

9(1,2) = Coulomb interaction + generalized Breit interaction (10)
1 expiwr exp(iwrie) — 1
— _ (al . a2) p( 12) + (al . Vl)(al . Vg) p( . 12)
T12 712 W2

where w is the frequency of the exchanged photon, the o are the usual 4x4 Dirac
matrices and 1/715 is the usual Coulomb interaction which is added to the GBI to
obtain the full two-electron interaction. The above formula results from choosing
the Coulomb gauge. If the Feynman gauge is chosen, the Mgller interaction [18] is
obtained, which is also used to include the lowest order QED effect between two
electrons in some computer codes.

A specific numerical example is presented in Fig. 4, where the cross section
for collisional ionization of hydrogenic ions is displayed for three high-Z values
(66, 79 and 92). The calculations were taken from [17] and the lone experimental
point (for Z=92) was measured with the Lawrence Livermore EBIT apparatus, as
discussed in [19]. Note the excellent agreement between experiment and theory
at Z=92, underscoring the importance of the Breit interaction when calculating
cross sections that involve tightly bound electrons in high-Z elements.

As expected, the behavior of the GBI is to increase the cross section over the
entire range of impact energies, with the effect becoming more pronounced with
increasing Z. The high-energy trends exhibited by these curves can be understood
with some knowledge of the Bethe high-energy limit [20] that results from treating
the continuum electrons as plane waves. The relativistic formula for the Bethe
limit has the same form as the nonrelativistic formula, provided that one retains
the impact electron velocity v instead of replacing it with the nonrelativistic (nr)
expression for kinetic energy (™ = mw?/2). For a transition of the form J — J'
the relativistic, Bethe high-energy limit, ionization cross section has the form

1
B5L(¢) o< — log(Cyrrprmv?/AE), 1

where AE is the ionization energy and C_, ;» is a constant that can be determined
from other fundamental atomic data that depend on the particular transition.
Note that Eq. (11) includes ionization via the Coulomb interaction only. From this
equation it is easy to understand why the curves computed with only the Coulomb
interaction in Fig. 4 tend toward a constant value at high impact energies. As the
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FIGURE 4: Ionization cross sections for the 1s electron in hydrogenic ions as a function of
impact energy in threshold units. The dashed lines represent results calculated with only the
Coulomb interaction while the solid lines represent the inclusion of both the Coulomb and Breit
interactions. The circle with error bars represents the EBIT experimental value (for Z=92) listed
in reference [19].

impact energy increases, the impact velocity v approaches the speed of light and
so everything in Eq. (11) becomes constant.

Bethe went a step further [21] to include the effects of virtual photon exchange
(i.e. the Breit interaction) in a perturbation expansion, retaining terms up to
O(v?%/c?). The resulting ionization cross section

1
BREIT () o 2 [log(Cy_y mv®/AE) —log(1 — v?/c®) — v?/c?) (12)
contains two additional terms that do not appear in Eq. (11). These terms are
sometimes referred to as the “relativistic rise”, and it is straightforward to verify
that they provide an increasingly positive contribution to the cross section with
increasing impact energy, as displayed by the COULOMB+BREIT curves in Fig. 4.
Applications to Plasma Modeling

As stated at the beginning of this work, the ultimate goal of generating such
large amounts of atomic data is to model non-LTE plasmas. For heavy elements



the size of relativistic atomic models (e.g. as measured by the number of configura-
tions) can easily be more than an order of magnitude larger than the corresponding
nonrelativistic models due to the jj-coupling that is required to describe relativis-
tic subconfigurations. The computational requirements for such an effort strain
existing resources and so the need to create fast, yet accurate, algorithms to carry
out large-scale modeling calculations remains paramount.

Conferences, such as the recently held NLTE-3 Kinetics Workshop at NIST
in Gaithersburg, MD [22], provide an opportunity to compare various approaches
in solving a variety of test problems. Some of the test cases are experimentally
motivated, while others are used strictly as benchmarks with which to compare
theoretical calculations. The test case involving the heaviest element (gold) pro-
vides an excellent test bed for codes that can generate large amounts of relativistic
data. For example, consider the emissivity plot displayed in Fig. 5 which represents
a spectrum for a specific density/temperature point (N,=10% ecm=3, T,=1.5 keV,
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FIGURE 5: Emissivity for the NLTE-3 workshop, gold test case for the plasma conditions
N,=10% cm~3, T.=1.5 keV, T,.=0.

T,=0) prescribed by the gold test problem. The solid curve represents the emis-
sivity computed from approximately 110,000 relativistic subconfigurations using
the unresolved transition array (UTA) approach. The dashed curve represents
the corresponding nonrelativistic curve computed from approximately 19,000 con-
figurations. The relativistic model involved the calculation of millions of cross
sections spanning eight ion stages (Ga-like through Sr-like) and required about



twenty hours of computational time (including the solution of the rate equations)
on an SGI Origin 200 workstation. Even with this relatively large model the dis-
played spectrum is not fully converged. The exploration of still faster methods
for generating atomic data and solving the rate equations remains a challenge for
future research efforts.

This work was performed under the auspices of the US Department of Energy.
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